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Sampling the canonical phase from phase-space functions
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We discuss the possibility of sampling exponential moments of the canonical phase freipattzanetrized
phase-space functions. We show that the sampling kernels exist and are well-behavedsforahywhereas
for s= —1 the kernels diverge in the origin. In spite of that, we show that the phase-space moments can be
sampled with any predefined accuracy from @dunction measured in the double-homodyne scheme with
perfect detectors. We discuss the effect of imperfect detection and address sampling schemes using other
measurable phase-space functions. Finally, we discuss the problem of sampling the canonical phase distribu-
tion itself.

PACS numbegs): 42.50.Dv

I. INTRODUCTION [3]), there exist number-phase uncertainty relatipfls and
in comparison to other phase distribution3(¢) is the
Studying the phase of quantized radiation field modes hasharpest one.
a long history(for a review on the quantum phase concepts, The lack of direct experimental availability ¢f(¢) has
see, e.g.[1]). Its importance in today’'s problems is also led us to the search of schemes for sampling the canonical-
apparent. For example, phase and photon number measugiase statistics from quantities that can be measured directly
ments have been considered as a basis in some quantuB7]. In balanced four-port homodyningdor a review on
teleportation schemeg$2]. Notwithstanding the various quantum-state measurement using homodyning, see, e.g.,
phase-dependent effects in quantum optics, phase itself hgg]), the exponential momentg, of the canonical phase,
not been uniquely measured and its very definition as a
physical quantity has been subject to many disputes.
Whereas for highly excitedquasiclassical radiation field
states different approaches give similar results, the various \Ifk:f dee*?P(p), ¥_, =W, 3)
concepts differ in the phase properties of quantum states m
close to vacuum. Therefore the question has arisen of what
are the differences between these approaches and how reln be sampled by integrating the measured quadrature-
evant are they experimentally. In this paper, we concentrateomponent statistics multiplied by well-behaved kernel func-
on the canonical phase and its relation sparametrized tions[5-7]. An advantage of the method is that it applies to
phase-space functions, with special emphasis on the measuyeth the quantum regime and the classical regime in a uni-
ability of its exponential moments by “weighted” averaging fied way. Of course, the question has been whether or not it
of measured phase-space functions. is possible to find othefand possibly bettgrmeasurement
The canonical phase distributié®?(¢) of a radiation field schemes suitable for sampling the exponential moments of
mode (harmonic oscillator prepared in a quantum state de- the canonical phase.
scribed by a density operat@r is defined by It is well known that balanced double homodynifight-
port homodyning provides us with a two-dimensional set of
1, data whose statistics correspond t@-parametrized phase-
P(¢)=(2m)" Xelel¢), @) space functiotW,(q,p) with s<—1 [9]. In this scheme, the
limiting case ofs=—1, which corresponds to the HusiiQi
where the Fock-state expansion of tliennormalizablg functionQ(q,p) =W_4(q,p), requires perfect detection, i.e.,
phase stategp) reads 100% detection efficiency. Having a sampling scheme lead-
ing from a measured-parametrized phase-space function to
> the exponential canonical-phase moments would be the most
lo)= > e'"[n). (2)  direct method of measuring the exponential moments of the
n=0 canonical phase. Since each measurement ewgpd (al-
ready yields a phase value aggfip), the measured values
Even though there has been no known experimental schenuly need to be “weighted” by the kernel functions in the
that is directly governed b(¢), this distribution has very averaging procedure yielding the exponential moméhnts
nice properties: it is non-negative, conjugated to the photon- There are also measuring schemes, e.g., unbalanced ho-
number distributior(in the sense that a phase shifter shifts amodyning, suitable for determining-parametrized phase-
phase distribution while a number shifter does not change ispace functionsWg(q,p) with larger values ofs [10].

1050-2947/2000/68)/06381110)/$15.00 62 063811-1 ©2000 The American Physical Society



FIURAéEK, DAKNA, OPATRN’Y, AND WELSCH PHYSICAL REVIEW A62 063811

However, in these schemes the functidNg(q,p) are not pkok+1 oo
obtained in terms of the statistics of measurement events Kk(r;s):Tf dpi p* 10 (p?)
(g,p), but they are obtained pointwise for each phase-space ™ 0

point (g,p) set up in the experiment. Moreover, they are e

typically reconstructed from the measured data rather than X[1+s+(1-s)e "]

measured directly. Nevertheless, it is interesting to ask the F{ 2(1—e‘f’2)r2
Xexg —

guestion of the prospects of phase measurement in schemes
of that type.

In this paper, we try to answer the questions raised above,
focusing our attention on the problem of using balanced
double-homodyne detection for sampling the exponentia|'|
moments of the canonical phase. In Sec. Il, we present the

] . (8

1+s+(1—-s)e ¥

ere, the functio2™(p?) is given by

kernels that relate the-parametrized phase-space functions = (—1)n
to the exponential phase moments, and in Sec. Il we apply Q(k)(p2):e—922 | AW p2n, (9)
the results to direct sampling of the exponential phase mo- n=0 I

ments in balanced double-homodyne detection. Other mea-
surement schemes are discussed in Sec. IV. Section V agv'here
dresses the problem of determining the phase distribution

itself, and a conclusion is given in Sec. VI.

o T
A<'<>=f de,sint—2 f de;sin™ ~1g;- -
Il. THE KERNEL FUNCTION T B L P i

Our task is to find the kernel functio,(r;s) such that 27 )
the exponential moments of the canonical phase can be given <, doy—1{[sire;
by (k>0)
X{1+sirfe [1+ - - (1+sirfe_1)]}]". (10)

27 o
‘l’k=<f5k>=f de e‘“”f rdr W(r,¢;s)Ky(r;s), (4)
0 0 It is worth noting thai(r;s) is unique which follows from
the fact thatk,(r;s) is the phase-space function &f and
and¥_, =V}, where from the uniqueness of phase-space representations. This is
in contrast to the kernel functions that relate quantities to the
= quadrature-component statistics measured in a balanced ho-
E=2 [n)}{n+1]. (5  modyne scheme, where certain functions can be added to the
n=0 kernels without changing the res(ig,8,14.
The integral in Eq(8) converges fos>—1 because
In Eq. (4), the phase-space functidl(r,¢;s) is written in
polar coordinates, i.e\WV(r,¢;s)=W(r cose,r sing). Note

thate'®“K,(r;s) is the (— s)-parametrized phase-space func- 10W(p2)|<e PV, (11
tion of the operatoEX. We now take advantage of the ex-
pression 6]

V| being some constant. Plots of the kernel function for dif-
ferent values of andk are shown in Fig. 1. We can see that
K(r;s) monotonically increases withfrom zero to one for
s=0. If s<0, thenK(r;s) attains the maximum at a finite
value ofr. The position of the maximum shifts toward the
. origin and the value of the maximum tends to infinity as
where the expectation value of the normally ordered correla: .
s— —1. Hence the kernels that relate the exponential phase

tions of the photon creation and destruction operators can be . X o
calculated by means o(r,¢:s) as[11] moments to theQ function diverge atr=0. To be more

specific, it can be show(Appendix B that

(-1

‘I’k= <é’rlél+k>7 (6)

I ron .
fo dee'ke Ki(r;—2)ocr K (12)

<éT|él+k>:(_1)|”<%s

- 2
xf rdrrkLl‘(i)W(r,cp;s) (7)  near the origin.
0 1-s Though the functiorK,(r)=K,(r;—1) diverges, it can
be used to obtain the exponential phase mom#htfrom
(Ll‘, Laguerre polynomial Combining Eqgs(4), (6), and(7), the Q function Q(r,¢)=W(r,¢,—1). It is not difficult to
we derive(Appendix A prove that Eq(4) can be rewritten as
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1' 1
2.0 —— . . . q D, Vacuum
15¢ FIG. 2. Double-homodyne scheriE3]. The signal beam is split
~ on a beam splitter BSand the resulting beams are mixed with
& 1.0} strong coherent local oscillatgLO) on the beam splitters B&nd
v ; BS,. The LO beams at BSand BS stem from a common source,
0510 split at BS;, and their phases differ by/2, determined by tha/4
] ) phase shifter. The difference of photocurrents measured at the de-
0.0 Iy . ‘ ‘ ‘ ‘ tectors Q and D, is proportional toq and the photocurrent differ-
00 05 1.0 1.5 20 25 30 ence at  and D, is proportional top.
T
3.0 — i i i I1l. CANONICAL PHASE FROM DOUBLE HOMODYNING
251 ' © A. Statistical error
. 20t Let us consider balanced double-homodyne detection
& o1sl (Fig. 2) and first assume perfect detection. Each experimen-
‘M'e’n tal event then gives a pair of real numbers that, after rescal-
1.0} ing, define a point in the phase space of the signal, and the
05| / probability density of detecting the space points is equal to
/ the Q function of the signal state9]. When thejth measure-
0%0 05 10 15 20 25 30 ment yields the phase-space point with polar coordinates

T (rj,¢;) and altogetheN measurements are performed, then

the exponential phase moments can be estimated to be
FIG. 1. The kernel functioK,(r;s) for k=1,2,3 ands=0.75

(full line), s=0 (broken ling, s=—0.75 (dashed-dotted line s 1 N
= —1 (dotted line. «lr(keSO:N >, explike))Ky(r)). (15)
o . s Lest)
‘I’k:f rdr Qu(NK(r), (13) In order to answer the question of how closel§) to
the actual moment¥,, we calculate the mean value and

dispersion of the estimaté&5) over all possible measurement
results. Since individual measurement outcomes are indepen-

where dent of each other, we can take advantage of the summation
rule for mean values and dispersions of independent quanti-
o p2n+k ties. Thus, for the real part ol"(keS‘) we get the mean value
N=| deekeQ(r
Qk( ) fO ¢ Q( (P Z \/Tk)pn+k,n L N
(14) E(ReW|®) = 2, Elcostke;Ky(r))]
(pn+kn (n+k|e|n)). It follows from Eq. (14) that Q,(r) 1 N %
«r for smallr, and thusQ,(r) exactly compensates for the N 2 ZWd‘Pi o rydr;
divergence oK(r), Eq.(12). In other words, if theQ func-
tion of the state is known exactly, then the integration in Eq. X cog ko)) Ki(rj)Q(r;,¢j)
(13) can be performed straightforwardly, thus yielding the 1
sought¥, . However, measurement of tlgg function is al- = _NReV,=ReW,, (16)

ways associated with some error, so that the region close to
the origin of the phase space needs careful consideration in
praxis. as it should be, and the dispersion
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. Dlcogke;)K(rj)]

|=

UZ dcpfwrdr cog(ke)KZ(r)Q(r,¢)

0
]
(17)

Similar expressions hold for the imaginary part W{*.
Since coqke)=1/2+ cos(X¢)/2, after performing the angu-
lar integration in the first term on the right-hand side of Eq.
(17), the radial part contains the produ@p(r)KZ(r) so that
this integral over the divergent kernel can become infinite.
Let ny be the number of photons at which the Fock expan-
sion of the state starts. Taking into account Elgl), we see
that the integrand behaves as?™~K*1 for smallr. Thus,
the exponential phase momenkg can be directly sampled
from the double-homodyne data, provided thatny+1,

_ f d(pfmrdrCOS(k(P)Kk(r)Q(r,(P)
2@ 0

because in this case the dispersion of the estimation is 03 T S
bounded. In the opposite case loEny+1, the statistical 03 -02 01 00 01 02 03
fluctuation diverges so that the exponential phase moments Re

cannot be sampled without a proper regularlzatlon of the FIG. 3. Output of simulated double-homodyne detection of a
kernels. Note that for states that contain the vacuum, regu- B :

o : 2 coherent statéa), a=1 (@), and enlarged detail of the output
larization of the kernels is necessary for all exponential

phase moments around the originb).

total error has thus a minimum at a certain radieig). 4(c)],
B. Kernel regularization and sampling algorithm which can be regarded as the optimal radius for regulariza-
Since the main part of the statistical error arises from datdion. Unfortunately, the determination of the systematic error
close to the origin, it is natural to modify the procedure byrequires knowledge of the state. Nevertheless, an upper
omitting the datafalling inside a small circle <r, (see Fig. bound of the systematic error can be estimated, without any
3). Of course, such a deliberate data filtering introduces int@ Priori knowledge of the measured state. Assumirgl,
the measurement a state-dependent systematic error. Nevéf€ may write

theless, the statistical error is reduced and the total error may w ok r2
be acceptable. Replacir,(r) by the regularized function 10un)|=2> Ip |
Ky (r) according to K n=0 \n!(n+k)! nten
Ki(r)=0(r —1o)Ky(r) (18 rke ™ &
<2 VPn,nPn+k,n+k
[ 6(x), Heaviside step functidnthe systematic error of the kI A=
kth moment can be given by kg 4 kg 12
, | . <2 Pn,n p2n-%—k,n+k$2 ’
o= fo dqoe'wfo rdr Q(r,@)Ky(r) Je o JI
(21)
= J'rordr Q(NK(r). (199  where we have used the inequalipy, nl < pmmPnn implied
0

by positive definiteness gf. Hence, an upper bound of the

. .. systematic error can be estimated. Using Hd), we find
A measure of the total error is then the sum of the statlstlca{hat

and systematic errors,

Reo(®=|Rec(™¥)| +[D(ReW¥ {12 (20) ESRE ifrodr rkr e K (). 22)
Jk!'Jo
and Ima® accordingly.
From the example in Fig. 4 it is seen that the statistical/A typical state for whicHo(¥*) is of the order of magnitude
error decreases with increasing radiggFig. 4@)], whereas  of upper-bound value igf)=(|0)+|k))/+2. For this state,
the systematic error increases with the radkig. 4b)]. The  Q,(r)=r¥exp(=r?/k!, which yields one half of the upper
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statistical error systematic error ing one. In the zeroth step, sampling of the desired exponen-
100 g——T——T——1— 0.05 F— tial phase moments from alN measurement events is
3 - performed. Since also data with very smathay contribute
101 L _ 0.04 - to the result, the statistical error can be very large. In contrast
I to the standard sampling technique, where there is no need
- 4 003 F for data storage, here the data within a certain small circle
102 E 3 | are stored. The radius of the circle should be slightly larger
i ] 0.02 i than the expected regularization radius. The regularized ker-
103 3 3 0.01 - nel function(18) is now used, withr, being increased step
F 3 I by step, so that in thath stepn events closest to the origin
104 Lo are covered byry. In each step statistical and systematic

n 1 2 1 n 1 n 0.00 1 L 1 n
0.0 02 0.4 06 038 0.0 02 04 errors are estimated. The valuergffor which the total error

I, is minimized is used for calculation of the final result.
Let us mention that the detrimental effect of divergent
100 g T T T 3 kernelsK,(r) atr=0 (in connection with nonzer® func-
(c) 3 tion) resembles the interference experiment$18], where
101 LI~ . the statistics of(experimentally definedsine and cosine

E LRI e 3 phase differences are determined. In the experiments, data
giving rise to divergences are disregarded, which is criticized
in [14] from the argument that the disregarded data represent
] an extra noise in the statistics. In our case, we disregard data
3 3 leading to high statistical error and include the resulting sys-
00 02 04 06 08 tematic error into the sampling scheme.

total error

C. Total error and number of measurements

FIG. 4. Statisticala), systematldb_), and total(c) errors of the Let us assume that a particular phase momkptis de-
real part of the sampled exponential phase momen¥Ref a

b ! sired to be determined with a prescribed total precision
coherent stat¢a), a=1 for different numbers of recorded events ™ 5 .
N o’ . What is the necessary number of measurement events

N? If there were no need for regularization and the precision
were limited only by(finite) statistical fluctuation, theiN

« (o) =2, When the vacuum contributes to the state to be
measured and a regularization radngsis introduced, then
the total error reads

bound value. Taking into account thi&f(r) e 1/rk for r<1,
we find from the inequality(22) that the upper bound of
|o{%) increases quadratically with,. The dependence on
ro of the upper bound of thés{®¥® is shown in Fig. 5.
Notice that the systematic error is smaller for higker o{P=A (= Inrg)V2N"V2+B,r2, (23)
The state-independent upper bound of the systematic error
and the estimated statistical error can now be used to deter-
mine the upper bound of the total error. Its minimum then
determines an appropriate regularization radigisA pos-
sible algorithm for optimized data processing is the follow-

Uf(tot):Akrcl)*kal/z-F Bkr(Z), k=2, (24

where A, and B, are constants. The optimal regularization
radiusr°, which minimizes the total errof24) depends
onN as

systematic error
i . rg"pt)ocN_l/[z(” K] (25)

From this expression and E(R4) we find that

(1005 N~ U(1+K) (26)

NM((T(ktOt))_(l+k) (27)

(k=2). The cas&=1 needs separate consideration, because
of the logarithm, which does not provide us with a simple
analytical expression. Obviously\ increases faster than
FIG. 5. Upper bound ofo{¥*| estimated from the inequality (0$°9) 2 with decreasing error. Thus, we can see that in the
(22) for k=1 (solid line), k=2 (dashed ling k=3 (dotted-dashed limit of small total error ordinary homodyningvhich does
line), andk=4 (dotted ling. not require regularizationis better suitable for sampling ex-
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10 0.1 - TABLE Il. Comparison of the exponential phase moments of a
coherent statéa), =1, sampled in homodyne detection with the
(@) (b) exact ones. In the computer simulation, the-ghase interval of the
quadrature components is divided into 120 equidistant values, and

- altogetheN=10° events are recorded.
5 0.0
R k W, Rew (&) Im W &Y

1 07732  0.77360.0004 0.0002 0.0006
2 04805  0.47950.0009  —0.0003:0.001
. o o1l L 3 02559  0.25730.0017 0.0005 0.0017
0123 45 0123 45 4 01209  0.12080.0021 0.0002 0.0021

k k

FIG. 6. Sampled exponential phase moments of a coherent statérs observed in the two schemes increases with increasing
|a), @=1; (a) real part of ¥ (&Y, (b) imaginary part of(*). The  index k of the moment. Note that fok=4 the error in the
error bars indicate the estimated statistical error. In the computedouble-homodyne schemetisn times largetthan in the or-
simulation, N=10° events are recorded and perfect detection isdinary homodyne measurement.
assumed. The dashed regions correspond to the phase moments of

the radially integrated function. E. Imperfect photodetection

_ Nonperfect detection introduces additional noise into the
ampling scheme. In particular, it is well known that when
the detection efficiency, is less than the critical value of
1/2, then the density matrix in the Fock basis cannot be
sampled from the data measured in balanced four-port homo-
D. Computer simulation dyning in general15]. The limit may be circumvented using

To demonstrate the feasibility of the method, we havesophisticated mathematical processifig], provided that
performed Monte Carlo simulations of doub|e-homodyne desomea Prlorl information about the quantum Statells avail-
tection of theQ function for sampling the exponential phase able. Th.IS enables one to truncate the state expansion at some
moments of a coherent state. Results are shown in Fig. 6 arfPPropriately chosen photon number. Without truncation, the
Table I. From Fig. 6 and Table | it is seen that the samplecptatistical error would explodgl7]. Since measurement of
exponential phase moments are in good agreement with tH8€ Q function in balanced eight-port homodyning corre-
exact ones. Note the strong increase of the error with théPonds to measurement of twg'2 shifted quadrature com-
index k of the momentfor a detailed error analysis, see Fig. Ponents in balanced four-port homodyning witfreduced to
4). Further, a comparison between the dashed and undasha#2, we are just working, for perfect detection, at the critical
bars in Fig. 6 clearly shows the difference between the convalue.
cept of canonical phase and the phase concept based on theln a real experiment, the detection efficiency would be
radially integratedQ function. always smaller than unity, but it can be very high, eq.,

In order to compare double homodyning with ordinary =0.99. The effect of nonperfect detection is that the expo-
homodyning, we have also simulated homodyne detection diential phase moments of a “smoothed” quantum state are
the quadrature-component statistics for sampling the expdsampled rather than those of the true one. Since the addi-
nential phase moments of the same coherent state as in tienal noise is Gaussian, the phase-space function that is ac-
simulated double-homodyne experiment, using the method ifally recorded is not theQ function but the function

[5—7]. The results are presented in Table Il. ComparingWi-2,-1(4,p). This function cannot be used for sampling
Tables | and Il, we see thafor equal total numbers of the exact values of the moments because the kernel functions

events the error in ordinary homodyning is indeed smallerdo not exist. What we can do is use the kernel functions
than in double homodyning. The difference between the erK¢(r;—1) in combination with the measured function
W;_,,-1(qg,p), which gives rise to an additional systematic
TABLE I. Comparison of the sampled exponential phase mo-€/Tor- Of course, such an error cannot be diminished by in-
ments shown in Fig. 6 with the exact ones. The displayed optimize§reasing the number of measurements. The procedure is
regularization radiir, refer to Re¥,; values corresponding to €quivalent to the use of the kernel functidq[r;—1

ponential phase moments than the double homodyning, be
cause it requires a smaller amount of data to achieve th
same precision.

Im ¥, are similar in magnitude. +2(» 1—1)] in combination with theQ function. For a
given quantum state, the systematic error can thus be given
k L ReWw (&) Im W (&Y ro by
1 0.7732 0.779610.0006 —0.0008+0.0007 0.007 ®
2 04805  0.4830.003 0.00+0.003  0.061 AWy = fo rdr Qu(r)[Ky(r;=1)—Ky(r;=3+27~1)].
3 0.2559 0.26:0.01 0.0a:0.01 0.160 (29)
4 0.1209 0.130.02 0.0 0.02 0.277

Its result is the underestimation of the magnitude of the mo-
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ment. Since the difference of the kernel functions is essen-
tially nonzero only around the origin=0, the systematic
error A, W, will be highest for states close to vacuum. After
a proper regularization, one can use E2f) to get a reason-
able estimation of the error by substituting the measured sta-
tistics for the unknowrQ function.

IV. OTHER MEASUREMENTS OF THE PHASE-SPACE
FUNCTIONS

The phase moment¥, can be also obtained from quasi- gffg:;:{:;,.3::1::‘:\3\“
distributions reconstructed in unbalanced homodyri@j, R RRORRY
or cavity measuremenf48,19. However, these methods do
not yieldWy(q,p) as statistics of eventsj(p), but the func-
tions W¢(q,p) are determined pointwise. The restriction in
practice to a selected finite number of points necessarily re-
sults in a systematic error, because the integration over the

phase space is replaced by summation over a finite number FIG. 7. Plot of the functiorF(r,¢:0.5).
of points selected by the experimentalist. Having determined

W(q,p), the exponential phase moments, can then be o s_1\n/ o \m+1
reconstructed fromiWg(q,p) on the basis of Eq(4). Since Brn(r,S)= / 'rmn(_) (_)
the kernel functiork,(r;s) is well behaved fos>—1, no m! 2 ) \1+s

problems with divergences arise here. 2 2
In unbalanced homodyning, displaced Fock-state distribu- LM ar exp( B i) (31)

tions p(n,a) are measure@10,2(. It can be expected that " —s? 1l+s

the cumbersome way of reconstructivig from p(n,«) via

W,(q,p) may be avoided and the reconstruction can be perfor m=n, and B,,=B,,. The series30) only converges

formed directly from the measured data. This could be dondor s>0 (for the limiting cases=0, see als$24]).

in a similar way as in the reconstruction of the density matrix Let us express(r,¢;s) for s>0 in terms ofK(r;s).

in the Fock basi$21]. A similar approach can be used for From Eq.(3) it follows that

different physical systems: statistics of the displaced Fock

states of vibrating trap ions has been obtained in state- _ ke

reconstruction experimenf{g2], and schemes based on dis- P(‘P)_ﬁ k;w Ve .

placed Fock statistics of the cavity fields have been sug-

gested[18,19. In particular, the scheme dfi8] directly  Combining Egs(32) and(4) and recalling Eq(29), we may

yields the Wigner function, from which the exponential rite F(r,o— y;s) in the form

phase moments can be obtained in a very straightforward

way. Even though many interesting problems are related to 1

these schemes, we will not deal with them in this paper in F(r,e;s)= e

any more detalil.

oo

(32

1+2k2 Ki(r:s)cogke)|. (33
=1

Whenr—« thenK,(r;s)—1, and thusF(r,¢,s)— &(¢).
V. PHASE DISTRIBUTION Regrouping the terms in EqéA1) and(A2) (for s>0) and

In order to answer the question of the possibility of directUSing @ summation formula for Laguerre polynomis,

sampling of the phase distribution itself, we have first toWe can rewritek,(r;s) as
answer the question of the existence of kernElg,¢

l// ) h th 2 k+1 5
—i;S) such that o)kl T —2r?/(1+5)
K(r;s)=r (s+1> e
2w ®
P(<p)=f0 dwfo rdr W(r,¢;s)F(r,e—4;5). (29 Xg (—1)" (1_S)n [ ar?
A=0 \(n+1)...(n+k) \1+s/ " 1-g2)’
Obviously, F(r,¢— ¢;s) is the (—s)-parametrized phase- (34)
space function of the phase st&® in Eq. (2). In [23] it is
shown that this function can be given by which is suitable for computing (r,;s). An example is
displayed in Fig. 7.
co) — i(m-n)e The fact that for a large class of stat®r,¢;s) does not
F(r.¢:s) % Bra(r.s)e ’ (30 exist as a regular function far>0 limits the applicability of

Eqg. (29). Nevertheless, there exist states for whiglr , ¢;s)
where for s>0 is a regular function that can be sampled using

063811-7



FIURAéEK, DAKNA, OPATRN’Y, AND WELSCH PHYSICAL REVIEW A62 063811

unbalanced homodyning. However, fek-0 the statistical support of the US-Israel Binational Science Foundation. This
error of the sampledV(r, ¢;s) increases withr [26], so that work was supported by the Deutsche Forschungsgemein-
application of Eq.29) requires special regularization. schatft.

VI. SUMMARY AND CONCLUSION APPENDIX A: SAMPLING KERNELS

The main results can be summarized as follofysThere AND THE FUNCTION ©Q
exist well-behaved kernels for sampling the exponential mo-
ments of the canonical phase frogqparametrized phase-
space functions fos>—1. Fors=—1 the kernels diverge
in the origin,. and._fors<—1 the kernels do not exist as * 1 gl or2
regular functions (i) Even though fors=—1 the kernels Ki(r;s)=rk> (_) ka)L.k(—), (A1)
diverge, their integral with th& function is finite, so that o\ 2 1l-s
they may be used for inferring the exponential phase mo-
ments from the exad function. However, the kernel diver- where the coefficients
gence may cause divergent errors of some moments for some |
states if fluctuating experimental data are us@d) Finite (k) _ (=D" |
errors can be obtained if regularized kernels are used. Since Ci I Jin+1)---(n+k)\n/’ (A2)
regularization introduces a systematic error, an optimization
procedure should be used in order to minimize the sum of thean be rewritten as
statistical and systematic errofaz) The fact that the canoni-
cal phase moments can be sampled in double homodyning 1 (= ) P )
has an interesting interpretation. Each measurement event C| _TZJ’ dt,e ™ J’ dtke‘k‘kz'k, (A3)
yields a unique phase value, but these values must be taken m -
with different weights in dependence on the distance froquith
the origin of the phase space. This is in contrast to the ordi-
nary (four-pory homodyning, where a single measurement k
does not provide us with a phase val(e.Even if optimally z=1— e—pﬁ, pe=>, tjz_ (A4)
regularized kernels are used, the amount of data necessary =1
for realizing a desired precision is larger than in standar _ . . .
sampling. This is a disadvantage of the double—homodyndélm.stItUtIng this expression into Bg1) and using the sum-
scheme in comparison with ordinary homodynirgi) In  mation rule
double homodyning, correct results require perfect detection, P | 5 k-1
because there is no simple possibility of compensation for E (1;5 ) k(i) :( - 5)

. . Y ) z| L 1=z

detection losses, which cause an additional systematic error. =0 | 2 1-s 2

This is another disadvantage of double homodyning com- 2

pared to ordinary homodyning where a compensation of im- X ex;{—zkr }

perfect detection is possible for efficiencies down #o z(1—-s)2—-1]

>0.5. (vii) Thus, in reply to the question posed in the Intro- (A5)

duction, it does not seem that phase-space measurements

based on double-homodyning are closer to canonical-phasee arrive at

measurement than quadrature-component measurements

based on ordinary homodyningyiii) In contrast to ordinary rkok+1 ro 2

homodyning however, the sampling functions in double ho- Ki(r;s)= TJ dtl[ e 1 f

modyning are uniquely defined. This follows from the fact . -

that they are actually phase-space representations of

guantum-mechanical operator®) The exponential phase

moments can also be inferred from the data recorded in other [{ 2(1_e—p§)r2
Xexpg —

Substituting Eq(7) into Eg. (6) and comparing with Eq.
(4), we can expreskK(r;s) as

@ 2
d tke_ ki

2
X[1+s+(1—s)e Pk] k1

schemes such as unbalanced homodyning, in which
s-parametrized phase-space functions are reconstructed
pointwise. (x) Kernels for sampling the distribution of the o .
canonical phase exist as regular functions only $or0.  Note that the series in EA5) is only convergent for
Even though for some states the corresponding phase-spald(1—s)/2|<1. We havez,<1, thus

functions exist and can be measured using unbalanced homo-

dyning, the behavior of the statistical error would require a (1-9)/2<l=s>-1 (A7)
special regularization of the scheme to be applicable.

] (A6)

1+s+(1—s)e*P§

must hold so that the function (s= — 1) represents limiting
case for sampling the phase moments.
The multiple integration in EqA6) can be conveniently
We thank J. Péma for stimulating discussions and ac- performed in hyperspherical coordinates. For this purpose
knowledge discussions with J. Clausen. J.F. acknowledgese introduce the functiof)®(p?) [6],

ACKNOWLEDGMENTS
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SAMPLING THE CANONICAL PHASE FROM PHASE. ..

QW(p?) = J'quol sin2¢,- - - J'Wd<PiSink7i71goi
0 0

k
x...fz d¢k_1eXp(—Z |t,2”, (A8)
0 =1

where
i—1
ti=p COS(pijl—Il sing; if i<k, (A9)
and
k-1
t,= pjl—[l sing; (A10)

with p=p\. The exponent can be expressed in hyperspheriz

cal coordinates as

k
Z = p?+ p?sirt e [ 1+SiPe {1+ - - - (1+sirfe,_1)}].

(A11)

Inserting this expression into EGA8) and expanding the
exponential function into a Taylor series, we arrive at .
together with Eq(10). A recurrence formula for the coeffi-
cientsA¥ in Eq. (10) can be readily obtained:

n
n
A¥=Bani 22 | |AK Y, k=3, (A12)
I=0
where
i+1
FJ_
fd(pSlN(p J— 7 (j=0). (A13)
2

Starting fromA(?)=2B,,, the formulagA12) and(9) allow

for fast and accurate numerical determination of the func-

tions QW (p?) even for highk.

APPENDIX B: ASYMPTOTICS OF Q®(p?)
AND DIVERGENCE OF KERNELS K, (R)

In order to analyze the divergence of the kern€|gr),

we must first know the asymptotic behavior of the functions

QM®(p?) for large p. We start from the integral representa-
tion (A8) and write the exponer(All) as

k
2 =p*+p%sife @ (@, ... ok-1), (B

with

CI)((Pz, e ,(pk_l)z1+Sin2<,02[1+sin2<,03(1+

Bl
(B2)

PHYSICAL REVIEW A 62 063811

Note thatd=1. We insert Eq(B1) into Eq. (A8) and inte-
grate overe,. Assumingk=2, the relevant integral is

T
C e— _ 2 :
I=J deysink2¢,eP*P sifer
0

/2 ) 2 sir?
=2J de,sint 2pe P P siMer, (B3)
0

Assumingp?>1, we may write sirp;~¢,, because the in-
tegrand is essentially nonzero only foy<<1. From the same
argument, we can extend the integration from=(@) to
(0,),

k—2,—

e P 2¢p ¢izr(%)(p2®)(l—k)/2.

(B4)

|%2f de1¢y

%o finish the calculation of), one has to integratd (K2
over the remaining angleg,, ... ,px_1 (with appropriate
measurg We eventually find the asymptotic behavior

Q®(p?)~Cypt ke ", (85)
The factor exptp?) comes from the firsp? in Eq. (B1).
Taking into account tha®(M(p?) =2 exp(p?), we see that
the asymptotic behaviqiB5) holds for allk=1.

To investigate the divergence Ki(r) atr—0, we make
use of the integral representati(®), which is rewritten here

as

k

Kil(r) = f “dpp 1M (p?)

k/2

x ek Dr’exd — (er°—1)r2]. (B6)

For smallr, the dominant contribution to this integral comes
from largep. We can replacé) by the asymptotic formula
(B5) and absorb the prefactors in@,

Kk(r)~Ckrkj;dpek”2exr[—(e"z— Dr?].  (B?)

Change of the variable according to
t=(e” ~1)r2 (B8)

yields

Ku() 1 fwdt | t+r
r~— n
K 2rkJo r2

The integration region of EqB9) can be divided in two
parts,t<R? andt>R?, with R=~r. For smallr, the dominant
contribution stems from the latter part where the approxima-
tion

o\ —1/2
) (t+rd)k-1le7t (B9

| 1
~|N—
r2

t+r?
2

In (B10)

r

063811-9
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can be used, and we find that

(—2Inr)‘1’2J’°@

- dt(t+r3)k et (B11)
r

Ki(r)~ .

The integral is finite for —0, and thus

-k

PHYSICAL REVIEW A62 063811

The logarithm singularity in the denominator is very weak in
comparison to the polynomial one in the numerator. Only the
polynomial divergence is relevant in E@), because it de-
termines whether the integral is convergent or not. Thus we
need not consider the logarithmic part, so that Eg{l2)
simplifies to

Ky (r)~r K, (B13)
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