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Abstract

We directly sample the exponential momenta of the canonical phase for various quantum states from the homodyne
output. The method enables us to study the phase properties experimentally, without making the detour via reconstructing
the density matrix or the Wigner function and calculating the phase statistics from them. In particular, combing the
measurement with a measurement of the photon-number variance, we verify fundamental number–phase uncertainty. q 1998
Elsevier Science B.V. All rights reserved.
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Optical homodyne tomography has been a powerful
method for quantum-state measurement, because the mea-

Ž .sured quadrature-component distributions p x,q s
² < < :x,q D x,q contain all the information about the quan-ˆ

w < : Ž .tum state x,q being the eigenstates of x q sˆ
y1r2Ž yiq iq †.x2 e aqe a . In this way, the Wigner functionˆ ˆ

w x w x1 and the density matrix 2–4 can be inferred from
Žexperimental data. When the state in a chosen representa-

.tion is known, then the mean values of arbitrary quantities
can be calculated.

ŽEach measurement is associated with errors at least,
.the statistical error which propagate in the calculation

procedure. Hence, the error of a calculated quantity can be
too large to be acceptable. For example, if we are inter-

² k:ested in photon-number momenta n , we have to multi-ˆ
ply the diagonal density-matrix elements D by nk andn,n

perform the sum. Since the statistical error of D does notn,n

vanish with increasing n, the total error is infinite after
summing all the terms. Truncation of the sum can avoid
this trouble for sufficiently low-order momenta, whereas
for high-order momenta also small values of D withn,n

large n may be essential. To overcome this problem, it has

been suggested to sample the desired quantities directly
from the measured data, without the detour via the density

Ž .matrix or other state representations . Formulas have been
derived that are suited for direct sampling of normally
ordered momenta of photon creation and destruction opera-

w xtors 5 , and an extension to arbitrary quantities that admit
w xnormal-order expansion has been given 6 . Quite recently

sampling functions for measuring the exponential mo-
w xmenta of the canonical phase have been derived 7 .

In this paper we apply the sampling method to an
experimental determination of the exponential momenta of
the canonical phase for various single-mode quantum states.
The results are then used for determining the phase distri-
bution as Fourier transform of the exponential phase mo-
menta. In particular, the sampled first exponential phase

w xmoment already defines a phase uncertainty 8,9 . Using
Ž .the simultaneously sampled photon-number variance a

verification of the number–phase uncertainty predicted
w xtheoretically in Ref. 9 is given.

The exponential phase momenta C are defined by thek
Ž .Fourier components of the phase distribution P w , i.e.,

ikw Ž .C sH dw e P w . For the canonical phase they arek 2p
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ˆk )w x ² :given by 10 C s E if k)0, and C sC if k-0,k k yk
ˆ y1r2 †Ž .where Es nq1 a, nsa a being the photon-num-ˆ ˆ ˆ ˆ ˆ

ber operator. It can be shown that C can be obtained fromk
Ž .the quadrature-component distributions p x,q on using

w xthe integral kernels given in Ref. 7 . Knowing C , thek
Ž .phase distribution P w can be obtained according to

Ž . Ž .y1 ` yi kwP w s 2p Ý e C . However, the first mo-ksy` k

ment already contains essential information about the phase
properties. It can be used to introduce a mean phase

< <wsargC and a phase uncertainty Dwsarccos C ,1 1
w xwhich implies a number–phase uncertainty relation 9

1
Dn tanDwG . 1Ž .2

Ž² 2:Note that for the number-uncertainty Dn s n yˆ
² :2.1r2 ² : ² 2:n the quantities n and n can also be obtainedˆ ˆ ˆ
from the measured data via direct sampling, with the

w xintegral kernels given in Ref. 5 . Hence, homodyne detec-
tion can be regarded as the most direct way that has been
known so far for experimental verification of the uncer-

Ž .tainty relation 1 .

Fig. 1. Measured exponential phase momenta C for a phasek
w Ž . x wŽ . Ž .squeezed state state F in Table 1 a real part; b imaginary

xpart .

Fig. 2. Measured exponential phase momenta C for a statek
w Ž . x wŽ .squeezed at a phase angle of 488 state H in Table 1 a real

Ž . xpart; b imaginary part .

w xThe experimental setup is the same as in Ref. 4 . Its
central unit is a monolithic standing-wave lithium-niobate

Ž .optical parametric amplifier OPA pumped by a fre-
Žquency-doubled continuous-wave Nd:YAG laser 1064

.nm . Operated below threshold, the OPA is a source of
squeezed vacuum. We study the spectral components of
the field around a frequency offset by Vr2ps1.5 or 2.5
MHz from the optical frequency v, to avoid low-frequency
laser excess noise. To generate bright light, a very weak
wave split off the main laser beam is phase-modulated by

Ž .an electro-optic modulator EOM at the frequency V and
injected into the OPA through its high reflector port. The
carrier frequency v is kept on-resonance with the cavity
and the two ‘‘bright’’ sidebands v"V are well within
the cavity bandwidth. By turning the modulation off, we
obtain squeezed vacuum, by blocking the OPA pump
wave, we are left with coherent excitations.

The signal is analyzed at a homodyne detector, whose
output current is mixed with an electrical local oscillator
phase-locked to the modulation frequency, low-pass fil-
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Fig. 3. Measured exponential phase momenta C for a squeezedk
w Ž . x wŽ . Ž . xvacuum state G in Table 1 a real part; b imaginary part .

tered and recorded with a high speed ArD converter.
Since the squeezed states are essentially two-mode states, a
two-mode detection is crucial for obtaining the correct
statistics of the light field. We remark however, that this
type of measurement may need modifications for general
states of the light field. The quadrature-component distri-

Ž .butions p x,q are obtained by subdividing the recorded
noise traces into 128 equal length intervals and subse-
quently forming histograms of 256 amplitude bins, normal-
izing the absolute bin width using as reference the distribu-
tion of a vacuum state.

In Figs. 1–3, the sampled exponential phase momenta
C , ks1,2, . . . ,20, are shown for a phase-squeezed statek
Ž . ŽFig. 1 , a state squeezed at a phase angle of 488 the
difference between the argument of the squeezing parame-

.ter and the argument of the displacement parameter and a
Ž .squeezed vacuum Fig. 3 . The error bars indicate the

statistical error. Since the main source of inaccuracy is the
fluctuation of the local oscillator, the error is dominated by
the systematic one. The canonical phase distributions ob-

Ž .Fig. 4. The canonical phase distribution P w reconstructed from
20 measured exponential phase momenta C given in Figs. 1–3 isk

Ž . w Ž . x Ž .shown for a a phase-squeezed state state F in Table 1 , b for
w Ž . xa state squeezed at a phase angle of 488 state H in Table 1 and

Ž . w Ž . xc for a squeezed vacuum state G in Table 1 .
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Table 1
² :Measured values of w, Dw, ns n , and Dn, and the resultingˆ

values of the number–phase uncertainty product Dn tanDw for
wŽ . Ž .various quantum states A,B coherent states; C,D amplitude-

Ž . Ž .squeezed states; E,F , phase-squeezed states; G squeezed vac-
Ž . xuum; H state squeezed at a phase angle of 488

State A B C D E F G H

w 0.02 1.59 3.13 3.13 y3.13 1.56 2.62 0.78
Dw 0.17 0.14 0.30 0.54 0.17 0.14 1.56 0.31
n 78.62 25.94 9.19 14.72 8.95 38.45 6.92 26.46
Dn 3.03 6.20 2.30 7.21 5.38 25.05 10.02 1.85
DntanDw 0.52 0.87 0.71 4.32 0.92 3.53 – 4.75

Ž .tained from the sampled momenta Fourier components
< <are plotted in Fig. 4. Since in Fig. 1 C decreases withk

< <increasing k slower than in Fig. 2, the phase distribution
Ž .of the phase-squeezed state in Fig. 4 a is more sharply

Ž . Ž .peaked than that in Fig. 4 b . Fig. 4 c clearly reveals the
double-peak structure of the phase distribution of a
squeezed vacuum. Note that the small oscillations in the

Ž .figures which also include negative values mainly result
from systematic errors.

Examples of w and Dw together with the measured
² :mean photon number ns n and photon-number uncer-ˆ

tainty Dn are given in Table 1 for various states prepared
in the experiment. The last row shows the resulting values
of the number–phase uncertainty product Dn tanDw, which

Ž .are in full agreement with the predicted inequality 1 . The
Ž . Ž .near- coherent states A,B and phase-squeezed states
Ž .E,F are seen to exhibit relatively small phase uncertain-

Ž .ties. Note that the coherent state B has the smallest phase
uncertainty. Relatively large phase uncertainties are ob-

Ž .served for the amplitude-squeezed states C,D and the
Ž .state H squeezed at a phase angle of 488. Note that in

comparison with a coherent state of the same amplitude
the phase-squeezed state and the amplitude-squeezed state
should exhibit smaller respectively larger phase uncer-
tainty. As expected, the near-maximum phase uncertainty

Ž . ŽDwfpr2 corresponds to the squeezed vacuum G the
.‘‘ellipse’’ in the phase space is centered at the origin .

Therefore, for this state the uncertainty product Dn tanDw

achieves a very large value. The smallest value of the
Ž .uncertainty product is observed for the coherent state A .

It is close to its limit 1r2. With respect to the photon
Ž .number, the amplitude-squeezed state C is seen to be

sub-Poissonian.
In summary, we have sampled the exponential mo-

menta of the canonical phase directly from the homodyne
output for various coherent and squeezed states produced
in a continuous optical field by means of parametric
amplification. This has enabled us to study the canonical
phase statistics experimentally, without the necessity of

state reconstruction, which saves calculation effort and
reduces the statistical error. In particular, from the sampled
first-order exponential phase moment and the simultane-
ously sampled first- and second order photon-number mo-
menta we have determined phase and number uncertainties
and shown that the uncertainty products are in agreement
with the theoretical prediction.
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