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Abstract. The minimization problem of finding the number-phase minimum uncertainty states
(Mus) is considered and its solutions are found either numerically or, under some special
conditions, analytically. The phase uncertainty measure is based on the Bandilla-Paul dispersion.
The problem is treated (i) in a finite-dimensional Hilbert space and (ii} for a countably infinite-
dimensional Hilbert space (i.e. the standard quantum harmonic oscillator), with the constraine
of a given mean photon number. The Mus relations between the photon number uncertainty
and phase uncertainty are presented. Connections to some other minimization problems are
discussed,

1. Introduction

The uncertainty principle and uncertainty relations are among the central and most
fundamental concepts of quantum theory. The presence of some limitations invoke questions
such as: where is the boundary that the quanturn world does not allow us to overcome?
What are the states that reach this boundary? This paper addresses these questions with
regards to the variables of quantum phase and photon number.

The fact that minimizing the spread of photon (or phonon) number distribution of a
quantumn oscillator causes loss of phase information and vice versa was clear from the early
days of quantum mechanics. Dirac was the first to try to quantify this by an uncertainty
relation

AgpAn >3 (1

in analogy to the well known position-momentum uncertainty relation, However, Dirac’s
relation is problematic because it requires A¢ to be larger than = for sufficiently small
An. This relation was derived from an incorrect assumption that there exists a Hermitian
phase operator ¢ conjugated to the photon number operator 7. Further investigations [1-3]
have shown that introducing operators referring to phase requires a much more sophisticated
approach, which then leads to more complicated uncertainty relations. For example, the
Susskind—Glogower [1] cosine € and sine § operators fulfilling the commutation relations

[, 81 =iC 1A, &)= —i§ (2)

imply uncertainty relations
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or a symmetric relation [3]
[(any®) + F][(AC)") + ((ASP) + 1 Po] 2 § “)

where Py is the probability of finding the oscillator in the ground state (arising from the non-
commuting nature of ¢ and §). Also, in the Pegg—Barnett model [4-6], which postulates
a finite-dimenstonal Hilbert space, we can get a state-dependent uncertainty relation [7]
due to the non-trivial nature of the number—phase commutator. Of course, neither of these
relations gives a simple answer to the question: given a fixed photon number spread, what
is the minimum phase uncertainty that guantum states can have?

Before trying to answer this question we should be clear about how to define the
uncertainty. A possible way, usual in the case of Euclidean variables is to take the standard
deviation, i.e. square root of variance, Agg = /Dy(@), where

O-+2a
D(@) = fe @ —($)o2p (@) do ®)
and where the mean is
842w
<m=f $p(8)dp. ©
g

It has the advantage that for a pair of non-commuting variables an uncertainty relation can
be written for the product of uncertainties—{following from the Cauchy-Schwarz inequality.
However, such uncertainty relations are often state dependent and it is difficult to present a
universal limit, valid for all states. There is also a reason against using the variance-based
measure of phase uncertainty following from iis type of ambiguity: it is well known that
changing the phase window [8, & 4- 27) over which we calculate means generally a change
in the mean (6) and the variance (5) [8]. To overcome this disadvantage and to benefit
from other properties, various other phase uncertainty measures were suggested, for their
review see for example, [9, 10]. A useful approach to this problem is based on integrating
periodic functions of phase rather than the phase itself. We can calculate the mean of the
exponential of phase and write it in the goniometric form

() = Rye® Q)
where ¢ is a uniquely defined phase mean and R, is connected to the dispersion cr‘%, a

measure of phase uncertainty introduced by Bandilla and Paul [11]. Here the mean is
calculated using the phase distribution

N 2” " '
w%=£ & p(6) 4o @®

The phase distribution p{¢) generally depends on the measurement scheme. In this work
we will consider the cancnical phase distribution, 1.e. for a state |} the phase distribution
is p(¢) = %Hgﬁ]w)]z and |¢} = 3, exp(ing)in}, which is equivalent to calculation of the
mean using the Susskind—Glogower operators as

) = i€ +iDy). ©)
{Other phase-measurement statistics, which may be especially interesting from the
experimental point of view are not considered here. For a review see, e.g. [12-14].} The
dispersion is then defined as

ocg=1-R; : (10)
usually it is calculated as

o =1—(C)* = (8. . (11)
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This measure of uncertainty takes values between zero and unity and is uniquely defined.
As may be shown, for a sharply peaked phase distributions and for a properly chosen
phase window, the variance gives similar results as the dispersion. An uncertainty relation
containing the dispersion can be derived from (3) [8]:

(A + Nog > L. (12)
In this paper we will use a phase uncertainty measure A¢ based on the dispersion and
defined as [15]

A¢ = arcsinoy . (13)

Similarly to dispersion this measure is uniquely defined; it takes values between zero and
w/2 and for sharply peaked distributions it yields similar results to the square root of
variance. In contrast to the dispersion it is measured in radians—and as discussed in
[15] has a simple physical interpretation based on the analogy between probabilistic and
mechanical guantities.

Let us briefly mention this point, treated in detail in [15]. As is well understood, the
mechanical analogue of the mean value is the centre of mass, and similarly the analogue
of the dispersion is the moment of inertia with respect to the centre of mass. Suppose
a one-dimensional body with unit mass, described by the mass density p(x); considering
only translational motion we can substitute for this body by a unit mass point located at
the centre of mass (x}. If we consider both translational and rotational motion of the body,
we can substitute it by two mass points (each with mass %) located at {x} = /D(x), where
D(x) = [(x — {x})*p(x}dx is the moment of inertia. Continuing this analogy to the phase
variable we can imagine a ring with unit radius and unit mass, its mass density being
described by p(¢). The centre of mass of this ring has polar coordinates R4 and ¢ given
by (7), and (8). The moment of inertia with respect to the centre of mass is given by the
dispersion o*j (10) and the rotational properties of the ring (about axes perpendicular to the
plane of the ring) are equivalent to those of two one-half mass points lecated on the ring in
positions ¢+ A¢, where Ag is given by (13). Thus using the window-dependent mean (6)
and variance (5) for describing phase properties corresponds to ‘cutting’ the ring at some
point 8, making it straight and then finding its centre of mass and moment of inertia. As
a contrast, using the guantities ¢, ag and A¢ keeps the circular shape of the ring when
describing its properties. This may be said as a response to Hall [9] who lacks a physical
interpretation of the Bandilla—Paul dispersion.

For this measure the Chebyshev inequality can be obtained in the form [15]

sin’(Ag) B 1-R?
1+ cos?(A@) — 2cos(Ag)cose 1+ Ri —2Rscos¢€

which connects the uncertainty as a measure of width with the probability to be in an interval
centred in the mean value (here ¢ € (0, 7) and P means the probability of the event in
the parentheses). Note that the right-hand side of equation (14) is the well known Poisson
kernel. )

An uncertainty relation, equivalent to (12), can be obtained for this uncertainty measure
in the form

P(l¢ — ¢l >€) < (14)

AntanA¢ > 3. (15)

However, this relation (similarly to (12)} is too weak, which means that it allows wider
class of points (An, Ag) than is actually possible; e.g. there are no states for which the
equality holds. There must be some stronger limitation and it is the aim of this paper to
find it—together with the states that reach the limits.
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The paper is organized as follows. In the next section knows methods for finding the
minimum uncertainty states are discussed and a variant of one of the methods is presented,
suitable for solving the above problems. Section 3 is devoted to finding the uncertainty
relation in the finite-dimensional Hilbert spaces and then in the limit N — oo, ie. in the
case of the Pegg-Barnett model. The last section discusses the uncertainty relations in the
case when a mean photon number is given.

2. A method for finding minimum uncertainty states

There are two usual methods for finding the (variance-based) minimum uncertainty states
(MUS); both assume the uncertainty relation in the form where the product of the variances
is greater than some limit [16, 2]. (In this paper we use the term MUS for every state
that minimizes the uncertainty of one quantity when the uncertainty of the other quantity
is given; in the terminology introduced by Aragone er af [17] such states would be called
intelligent states, the terrn MUS being reserved for states minimizing the product of the
uncertainties.) Let us consider two non-commuting quantities X, ¥, then

{ARYYUAR?Y) 2 1R, 5D + LIHAz, ASHE (16)
where AX = £ — (x) and Ay = § — {y). The MUSs, with respect to the relation (16),
are such states for which the mean anticommutator (i.e. quantumn covariance) vanishes,
{{A%, A$}) = 0, and the inequality turns into an equality. The direet method assumes
that the commutator is a c-number; the equality in (16) then appears for such states [} for
which AZ|Wry = cA$|y), where ¢ is 2 constant. The condition of zero mean anticommutator

implies that ¢ = —iy, where ¥ is real. Thus these requirements lead to the eigenvector
equation

(A% +iyAF)¥) =0. (17)

There are three real parameters here: (x}, {y} and y. Changing ¥ and solving (17) we
cbtain various MUSs with the means {x} and {y}.

For quantities whose commutator is a g-number and which then yield state-dependent
uncertainty relations, Jackiw [16] derived an analytic method for finding MUS. Setting the
variation of the uncertainty product to be zero, 8({{AZ)2){(A3)?)) = 0, he obtained an
Euler-Lagrange equation for 1) (actually an eigenvector equation):

AR? AF? '
[((Af)% 2 2] =0 e
Here we have four real parameters: (x), {y), {(Ax)?} and {(Ay)?), the last two being
connected by the uncertainty relation with equality sign. Solutions of (18) are stationary
states of the uncertainty product; among them we have to choose the one with the minimum
product.

It may be worth noting that the coherent states and the two-photon coherent (squeezed)
states, which are MUSs with respect to x and p, can be identified either as eigenstates of
some generalized annihilation operators (as in the direct method) or as ground states of
harmonic oscillator Hamiltonians (as in the analytic method).

The method used here is essentially based on the Jackiw analytical method: we will
seek for ground states of some operators, which we call ‘uncertainty Hamiltonians’. The
main idea is as follows. Let, under some constraints, the uncertainty Ag of a quantity g
be defined as Ag = fg((B }), where f; is some increasing function and B, is a Hermitian
operator with spectrum limited from below. (As an example we can take as the position
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uncertainty the function f({(£%)) = \/A(fcz) under the constraint that {x} = 0, or as the
phase uncertainty the function f3({—C}) = —arccos{—C} under the constraint of zero
mean phase.) The constraints here play the role of parameters in the above methods. The
minimum uncertainty states with respect to a pair of quantities ¢ and s then can be found
as the ground states |} of the uncertainty Hamiltonians

Hunel®) = £By + (1 — £) B, o (19)

where & is a parameter between zero and unity. The uncertainty relation for the MUSs can
then be written as a parametric equation

Agey = fUws| Bylve) Ay = f:({e] Bslys)) - (20)

The uncertainty relation then says that no state with uncertainty As = Asg, for some
£ can have less value of Ag than Age). The proof is straightforward: suppose such
a state |y} for which As = Asg) and Ag < Agg). Then (2| Bsra) = (s By e}
and W?|-’§q|‘/f?) < (y’fglﬁqiybg), due to increasing of f;. For such state it would then be

(waﬁum@)lw?) < (\[fglﬁ,,,,clm) which is a contradiction of the assumption that |y} is the
ground state. ‘

This method may be easily generalized for finding relations among higher numbers of
positive-definite quantities; the Hamiltonian (19) would then depend on more parameters.

A very similar method for finding various extremal states was also used by other authors
[18-24], however, their idea was based on solving extremum problems using Lagrange
multipliers. Also the conditions for the extrema were not the same in these works. We will
discuss some of their results with respect to the problems presented here.

Solutions of the ground-state problems of the Hamiltonians (19) can easily be found
numerically with arbitrary precision if we express the Hamiltonian in the Fock basis and
truncate the expansion at a sufficiently large photon number. Another possible way is to
work in a finite-dimensional Hilbert space and observe the behaviour of the solutions when
the dimension tends to infinity, as is the idea of the Pegg—Barnett model. In both cases we
can use standard software routines for finding eigenvalues and eigenvectors of matrices. It is
also possible to work with familiar approximate methods for solving ground-state problems,
like the perturbation method or the Ritz variational method.

3. Number-phase uncertainty relations in finite-dimensional Hilbert spaces

We will first use the method of the uncertainty Hamiltonian for finding the MUS in a finite-
dimensional Hilbert space. Let us consider such an N-dimensicnal space to be spanned by
eigenvectors of two complementary operators / and $. The interpretation of these operators
is quite arbitrary; however, finally in the limit N — oo we will treat them as the Pegg—
Barnett operators of photon number and phase. Another possible interpretation, perhaps
better than number and phase in the case of N finite, is connected to a model of a particle
moving along a circle with a finite number of sites: one quantity would refer to the particle’s
position, whereas the other to its discrete (angular) momentum. The eigenvectors of these
operators are connected by the discrete Fourier transform

) = Zexp( ) In)

n—U

Zexp( k) o) -

k—O

21
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Figure 1. ‘Number uncertainty’ in a finite-dimensional Hilbert space. The definitions (22)-(25)
are with respect to the circular topology of the space.

(These relations in this or similar form are discussed either in the original papers on
the Pegg—Bamett formalism, e.g. [4-6], or in papers dealing with a dynamics in finite-
dimensional Hilbert spaces, e.g. [25, 26).) We can notice the natural topology of such a
model—after the last eigenstate (|¢p—1) or |V — 1)) the first one (J¢b) or |0)) follows. It
suggests that for measuring uncertainties of such quantities we should use a similar measure
as for angular or phase variables—here we will work with the measure based on (11) and
(13). Let us call ‘normalized dispersions’ the quantities crg and o2 calculated as

G2=1-R:  ol=1-R: ' (22)

where

27 V)2 27 \V
2 _ in | 25
R = (; pn(r) cos (Wn)) + (; Dn(n) sin ( N n))
27 2 2 2
2 —_ .
RZ= (; Pa(@n) cos (W")) + (; Pl sin (W")) .
Here for a state given by the density operator § the probabilities are

pu(n) = {n|pln) P () = (GelBldn) . (24)

Similarly to the Bandilla—Paul dispersion these normalized dispersions take values between
zero (for a sharp value of # or ¢) and unity (e.g. for uniformly spread probabilities). If
we want to interpret ¢ as phase and / as photon number, it is better to measure the ¢
uncertainty in radians and the » uncertainty in numbers which increase with increasing N.
For the n uncertainty we also require that it yields the same results as the standard deviation
in the limit N — co. Thus it is natural to define the ¢ uncertainty A¢ as in equation (13)
and the n uncertainty An as (see figure 1)

(23)



Number—phase uncertainty relations ’ 6967

N .
An= —2; arcsing,, . 25

The last measure takes values between zero and N /4. Here the mean 7 is defined by

Ry exp (x-zin) Z Pnint) exp (1%:1) (26)

As may easily be checked, for states with excited r) components only with r & N
{condition of the Pegg-Barnett model) does our definition of Ar give almost the same
results as the standard deviation +/{n%} — (n}?, and the mean # is very close to the usual
mean {n), where (n} = 3 p,(n)n. On the other hand, our definition respects the circular
topology of the vanable whereas the standard deviation would give for the superposumn
of the extreme states (1/ NG) 2)(10y+ ]N —1}) the value (N —1)/2, our uncertainty is An =

R,
Figure 2. Dependence between the Mus parameters R, and Ry for various dimensions of the
Hilbert space. N =2, N =4 (—) N =3 (... WN=5--) N=10(—- -—)
N=20(—.  —).

Now let us turn our attention to find the MUS. We have to construct the uncertainty
Hamiltonian (19) and to choose conditions for means ¢ and 7. A simple choice is to
require that

$=0 and n=0 ‘ 27)

e same final results for uncertamnes would also be obtained for other mteger n and integer
¢ = Zk. Then R, = (C,} and Ry = (), where :

&, = E |n) cos ( ) {n Co = ; [} cos (%k) {xl - {28)

/]

the
k,



6968 T Opatrny

An

Figure 3. Relation between the MUs uncertainties An and A¢ for various dimensions of
the Hiibert space. The curves ending at the horizontal axis are successively for N =
2,3,4,5, 10,20, 40.

In the n basis these operators have the expansions

{mlén Ir) = .- COS (2_Im) (mléqb[r) = '%(am.r-(-l -+ Sm-!-!.r) (29)

N
where the addition of indices i Iis taken ' modulo N. To ensure the condition (27), we write in
the uncertainty Hamiltonian 8, = —C, and B¢ = —C¢, 50 that
BE) =-5C,—(1-80C,. (30)

Changing the parameter £ between zero and unity and finding the ground states of the
Hamiltonian we obtain all the MUSs fulfilling the condition (27) (particularly for £ = 0 we
obtain the |¢g) state and for § = 1 the }0} state). We can calculate for these states the means
(C,) and (C‘,;,) and from them the uncertainties A¢ and An. Let us mention that ground
states of the uncertainty Hamiltonian (30) with § = % have been used in the definition of a
discrete Q-function in [27].

The ground-state eigenvalue equation can be solved analytically for the lowest values
of N; for higher values we can get the results numericaily. Thus for NV = 2, 3, 4 we obtain
the MUS relation between R, and Ry in the form

R+R=1 (N=24 (31)
and
3R+ 3R} + 2R, Ry —2R, —2R; = 1 (N=3). (32)

These results together with the MUS relations between R, and Ry for higher N are depicted
in figure 2. All states allowed by the quantum theory have their R,, R, parameters below
this curve, i.e. with R, and Ry equal to or less than the values given by these relations. For
N 2 3 the area of allowed R parameters is increasing with increasing N it is interesting
that for ;¥ = 3 we have a stronger constraint than for N =2,

Considering the relations between uncertainties An and Agr we get the results given in
figure 3. For N = 2 and N = 4 we obtain simple results in the form of linear uncertainty
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relations:
A¢+:rAn>% (N =2)
7 e (33)

With N increasing we see that the An, A¢ MUS dependence approaches a limit—expressing
the n ~ ¢ uncertainty relation in the Pegg—-Barnett model. (For comparison of the An ~ A¢
relation of the Pegg—Bamett model with the Dirac relation (1) and the relation (15) see
figure 4.) However, it should be kept in mind that in the Pegg-Barneit model the states
cannot have components “from the opposite side of zero’, i.e. with n = N. Therefore the
states approaching the uncertainty limit must have sufficiently large mean photon number,
n={n} > An.

0.5 1. 1.5 2 2.5

Figure 4. Comparison between various An ~ A¢ uncertainty relatior;s: the Dirac relation (1)
(~ = -, the weak relation (15) {-~~ . —), and the limiting relation for N s 00 (—).

4. Uncertainty relations including mean photon number

The limiting results (N — co} from the last section are applicable for describing the n ~ ¢
uncertainties only for sufficiently high mean photon numbers, when the vacuum state 10} lies
far outside the interval {{(n)— An; {n)- An). However, in real situations the photon number
uncertainty may be of the same order as the mean; therefore it makes sense to ask what is
the form of the n ~ ¢ uncertainty relation under the condition that the mean photon number
is given. It is clear that in this case the phase uncertainty cannot be arbitrarily small,
even though we infinitely increase the photon number uncertainty. Recently, interesting
extremization problems related to this problem were studied, namely the problem of finding
states with a given finite mean photqn number and minimizing phase dispersion [21, 28, 29],
minimizing phase variance [19], minimizing the photon number operator and the quadrature
operator [20], minimizing the photon number uncertainty and the sine or cosine uncertainties
[22] or minimizing the phase dispersion and the angular momentum uncertainty of a plane
rotator [23]. In this section we will first discuss this limit of phase uncertainty given by
the finite mean phase number and compare the results with phase uncertainties of several
important states. Then we will find the relation between Ag¢ and An in the limit of {n) = oo

and finally we will consider the most general case for arbitrary (n).
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4.1. Phase uncertainty versus mean photon number

Let us now briefly recapitulate the results of minimizing the phase dispersion and the photon
number from the point of view of our method. The minimizing states (with ¢ = 0) are the
ground states of the uncertainty Hamiltonian

HEY =i —(1-£)C (34

where € is the Susskind-Glogower cosine operator. Here §¢ = —C, to ensure that é=0.
If we express this Hamiltonian in the Fock basis and look for the eigenstates in the form

o0
¥y =" caln) (35)
n=0
we get from the eigenstate equation
HEWY) = Aly) (36)
an infinite set of equations for the ¢, coefficients
A
Cpal = Cpml = (—1—_%_ + lzfé_n) Cn . G

These equations were obtained by Bandilla et af [21] (using the method of Lagrange
multipliers) and solved analytically giving

¢y = constant X Jpp14n(jp.1) (38)

where J is the Bessel function, p = =1 — 1—_’55 Jjpa1 and jp is the first zero point of the
Bessel function J,. Our numerical results can be seen in figure 5, where the dependence
between A¢ and {n) for these phase optimized states is depicted.

For comparison, the A¢ ~ (n) dependence is depicted also for other important states:

the coherent states, the truncated phase states

. — 1 _: ird
)5 = mge |} (39)

and the ‘coherent phase states’ (ses, e.g. [30-32])
2} = 1= 2"ln) (40)
n=0

where |z| < 1. For the last two states we can easily find an analytical A¢ ~ {n) dependence:

2{n)
Ag = arccos ) + 1 (41)
for the truncated phase states and
Ag = arccoty/ {n) 42)

for the coherent phase states. The phase uncertainty of coherent states was discussed in
[21]. 1t is interesting that the coherent states have a phase uncertainty (with the same {n})
smaller than both the truncated phase states and the coherent phase states which, in the
limit of § — co or {z| = 1 approach the phase states. For {n) 3> 1 the phase uncertainty
of coherent states behaves as A¢ ~ 1/(2./{n)), whereas for the truncated and the coherent
phase states as A¢ &~ 1/./{n}, ie. it is twice as large as the value of coherent states, The
asymptotic behaviour of the phase optimized states (ground states of the Hamiltonian (34))
was found in [21] and can be expressed as A¢ = +/1.8936/{n).
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An interesting question concerns the possibility of minimizing the mean photon number
and the phase uncertainty for some given class of states. For example, Freyberger and
Schleich [29] discussed such minimization for the squeezed states (two-photon states). From
the point of view of the minimum uncertainty Hamiltonian method, solving this problem
requires just using the Ritz variational method. Let us consider the squeezed states [, ¢}
(33],

ler, £) = D(@)8()10) (43)

where D(e) = exp(wé® — *@) is the displacement operator and S(¢) == exp(¢*a2/2 —
¢d*2/2) is the squeeze operator. Let the parameters e and ¢ be real, @ > 0, so
that we have a two-parametric class of states. The mean photon number for such
states is () = |&|* + sinh?|¢], then, given () we have a one-parametric set of states
13(\/ (n) ~ sinh? c)@(t)IO). We can find for which values of the squeezing parameter ¢ the
mean value of the uncertainty Hamiltonian is minimized and for this state then calculate
the phase uncertainty A¢. The results obtained by this approximative method for not too
high (n) are in a very good agreement with the precise, values—the relative difference
between Ag of the optimally squeezed states and A¢ of the actual phase optimized states
_ is at most about 0.2% for (n) < 10 and it is still Tess than 1% for (n) < 25. (Therefore
in figure 5 the curve related to the optimally squeezed states is indistingnishable from the
phase optimized states curve.) The problem of minimizing A¢ with given (n} for squeezed
states was approximately solved requmng that the contour ellipse of such state touches the
origin in the phase space [29], i.e. .= 1 3 exp(—{).

Fipure 5. Phase uncertainty for severai states in dependence on the mean photon number.
The phase optimized states and the optimal squeezed states are indistinguishable here (: 3
{~ — —): coherent states, (— - —): coherent phase states, (------ }. truncated phase states.

Freyberger and Schleich [29] suggested that a better assumption is to require that the
squeezed state should be displaced more, ie o > % exp(—Z), so as to minimize the overlap
with the vacuum state. Here we can give more accurate results, valid for arbitrary values of
the parameters (Freyberger and Schleich assumed exp(—¢) 3> 1); the observed behaviour
can be seen in figure 6. For very small (n) the origin can be inside the contour ellipse—the
limiting case is the vacuum state. Increasing {1} from zero we obtain a slightly squeezed
state, but initially with exp(—{) < 1, i.e. the state is stretched in the p-direction. This
surprising behaviour can be explained as following from the minimization of the overlap
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.

-1

-0.5 0.5 1 1.5 2 2.5 3

L=

X

Figure 6. Optimally squeezed states with very small mean photon number, The states start from
the vacuum, then when shifted along the x-axis they are first slightly stretched in the p-direction
(i.e. x-squeezed). For (n} ~ 0.2278 the contour curve touches the origin; for (n) = 2.605 the
state 15 a coherent state and for larger {n} it continues as stretched in the x-direction {p-squeezed).

with vacuum. Further increasing (n}, the { parameter returns to zero (for {n) = 2.605 we
obtain a coherent state) and then the state is stretched in the x-direction as ¢ decreases
into negative values. The ‘touching the origin’ condition ¢ = -é—exp(-g) is achieved for
{n) = 0.2278; for higher {n) the contour ellipse is actually more displaced, as considered

in [291.

4.2. Phase uncertainty versus number uncertainty; infinite mean photon number

Let us now study the problem of minimizing the photon number uncertainty and the phase
uncertainty for the case of a very large integer {(r). If we are working with An sufficiently
small, i.e. An <« {n}, we can find the MUS as ground states of the uncertainty Hamiltonian

HE)y=eN? - (1-5)C (44)

where N = #i—{n). Our approximation will be based on the assumption that the eigenvalues
of A" are all integers from —oo to 400, i.e. we can treat it as the angular momentum operator
f,z of a plane rotator. Such a problem was treated in [23]. In this case the Hamilionian
{44} is proportional to the Hamiltonian of a pendulum

i? —
Hyeng = Zmi' 5 — mgreos ¢ (45}

& mass point m constrained to move on a vertical circle with a radius », g being the
gravitational acceleration. The elgenfunctions of such Hamiltonian (in the ¢ representation)
are the Mathieu functions of even order [34, 35, 23], the ground-state wavefunction being

2(1 - .
7!’5.(?1) (¢) = %Ceo (%, _-(_,5'_51) et(n)¢ . (46)
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The MUS uncertainties are then

1 g 2 12
o= ([ (2] )
1 2z ¢ 2
Ay = arccos p f [ceg (5, 9)] cos ¢ d¢
0 .

where 8- = —2(1 — £)/£. This relation between the Ar and A¢ uncertainties is a Hmiting
one for the harmonic oscillator—no state can reach these values, but it is possible to get
arbitrarily close values by increasing (n) sufficiently. This relation is depicted graphically
in figure 7 (broken curve)—this curve is the same as the limiting one for the Pegg--Barnett
model. As may be checked with increasing N and by expanding (30} into a Taylor series, for
states with zero # and sufficiently small Ar the essential matrix elements of the uncertainty
Hamiltonian (30} can be made arbitrarily close to those of (44); therefore the limiting
relation of the finite-dimensional Hilbert space models (An <« N) is the same as for the
quantum rotator and highly excited harmonic oscillator (An < {n)).
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Figure 7. Relation between the An and A¢ MUs uncertainties under the condition of a given
mean photon number. {~ - ~): the limit of {r} — 00. {(— - —) A¢ = arccos An: beginning
of curves with non-integer (n}. (------ Y. &n ~ Ag¢ dependence for the phase optimized states,
end of the uncertainty curves. (——): Arn ~ Ag¢ uncertainties for various given (n}).

We can get a very good approximation of the ground state of (44) using the thz
variational method. As the test function we can take the von Mises distribution

V(@) = (27 Io(A) ™ exp (% cos¢ + i<n‘)¢>) (48)
in the phase representation which is
In—imy(A/2) ) ~
(nla) = Y~ - (49)

in the n representation. Here [, stands for the modified Bessel functl()n Let us, mention that
these states minimize the uncertainty product AL, A sin¢/{cos ¢} [2, 22]; their relationship
to the harmonic oscillator was discussed in [24]. The An ~ A¢ relation for these states is
given by the parametric function

VY TEA N2 o I (A) (5 0

A = T )
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The difference between this approximate A¢ and the actual limiting value is very small, at
most about 0.9%.

4.3. Phase uncertainty versus number uncertainty; arbitrary mean photon number

Let us now turn our attention to the general problem of finding states which minimize the
photon number uncertainty and the phase uncertainty with a given {n). Luk$ er al [23]
got very close to the solution of this problem (for special values of {n)} starting from
the minimizing states of the plane rotator (46} and omitting the Fourler coefficients with
negative indices. This approximation is very good due to fast convergence of the Mathieu
function Fourier expansion. Here we will consider the MUS states for arbitrary {n} and
with arbitrary precision. Such states can be found as the ground states of a two-parameter
uncertainty Hamilionian

B, wy=Er2+pui— (1-6C. (51}

Here the parameter £ takes values from the interval (0, 1], whereas i can take arbitrary
real values, even negative ones. We can easily check that such ground states are the MUS:
let the mean photon number of the ground state be {#); then no state with the same mean
photon number and the same (€} can have smaller (#2) and thus smaller Ar, and similarly
no states with the same {n) and the same (A?) can have larger (€} and thus smaller A¢.

The resulting MUS relations for A¢ and An are depicted in figure 7 and can be described
as follows. If the mean photon number is integer, then the MUS curve begins at An = 0
and A¢ = m/2, ie. the beginning comesponds to a Fock state [n), n = {n). If {n) is not
an integer, say {1} = [[{n)]] + p (where [[x]] is the largest integer not exceeding x), then
the state with minimum possible An uncertainty is the superposition of twa neighbouring
Fock states /T — pI[[{m}1]) + /21 {7} + 1). The n uncertainty is An = /p(1 — p) and
the phase uncertainty is A¢ = arccos +/p(1 — p). Therefore, all MUS curves for states with
non-integer {n) begin at points of the curve A¢ = arccos(An) for An € (0, %]. Every MUS
curve then ends at the curve representing uncertainties An and A¢ for the phase optimized
states with given {n). Then no increasing of An can decrease the phase uncertainty. Note
also that for {n) sufficiently large (and integer) MUS curves approach the quantum rotator
limiting curve of uncertainties {(47) as they should.

5. Conclusion

In this paper we have discussed a possible way for finding MUSs for a relatively wide class
of different uncertainties. The method is based or solving ground-state problems of some
‘uncertainty Hamiltonians’. It is very effective, especially when we solve this problem
numerically and can use software routines for finding eigenvalues of matrices. When trying
to perform analytical calculations, we usually obtain the same equations like when using
the method of the Lagrange multipliers. Nevertheless, the main idea of the method of
uncertainty Hamiltonians encourages us to take advantage of the all known mathematical
apparatus used for approximately solving the stationary Schridinger equation,

Cur main aim here was to find the limiting relations between the photon number
uncertainty and phase uncertainty (the definition of phase uncertainty being based on the
Bandilla—Paul dispersion}). We have approached this point in two ways: (i) working in finite-
dimensicnal Hilbert spaces and then increasing the dimension to infinity (the Pegg—Barnett
model) and (ii) considering the uncertainty relation with a fixed mean photon number and
then increasing this quantity.
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The results can be summarized as follows. Given a dimension of the Hilbert space
N and the uncertainty Ar, we can find the limiting uncertainty A¢ (which means that no
state can have smaller A¢). Similardy, if we consider a usual harmonic oscillator, given
a mean photon number (#} and the uncertainty An, we can find the limiting value for the
Ag uncertainty. These uncertainty relations cannot (except for a few of the simplest cases)
be expressed as some elementary functions, but the values can be calculated with arbitrary
precision. The A¢ uncertainties calculated in the two ways approach each other in the limit
N — oo and {n} - co.
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